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IT. CROSS-SECTIONAL MODELS

1. Introduction.

The general flow model discussed in Report No. I of this series is
useful for demonstrating the basic concepts of flow conservation and
equilibrium. However, it has very little structure and as a result has a
very large number of variables (the flows fij(t)). Without additional
constraints it admits many unrealistic flow patterns.

In this report we present some models which essentially describe
how a manpower system changes from one set of stock levels {si(t)} at
an accounting point t to another set {si(t+l)} at the point ¢t + 1.

The common feature of all these models is that knowledge of historic
personnel movement prior to t  is not required by *he model. The only
data requirements will be the cross-sectional structure of the system at
a given time; hence the name 'cross-sectional models.' A strong point in
favor of such models is that most organizations keep current files on
personnel such that determining the structure of the organization at say
month-end, or year end, is easy. In almost all cases with which the
authors are familiar, the information system in an organization does uot
allow for easv tracking of historical data over time.

Section ? nresents the hasic fractional flow assumptions. Sections 3-7
develop the theory and properties of cross-sectional models, and section 8
prcsents an application to University Faculty Planning. Section 9 gives'a
probabil stic interprecation of the fractional flow assumptions, and sections
10 and 11 give applications using these probabilistic interpretations; section

10 presents a university faculty retirement system, and section 11 some models



for student enrollment forecasting. Sections 12-14 discuss more advanced
theoretical concepts, and the report ends with notes and comments in

section 15.



2., Fractional Flow Assumption

S.

In the fractional flow model we assume that the fraction of the

stock in class i

is a fixed number qji’ indep

(1) i

for all ¢

This assumption is often
mation in a great many cases.
of the assumption against Lhe
for any specific application.
we shall discuss the validity
assumption.

The flows and stocks are

sum (1) over the index j we

w
N
—
=
i
—
e
f
§ ~12

J

N
which implies )

j=0
manpower in class i

q,. = 1. Th

into fra

From the other basic conservation relation (I.1) and (1) above we obtain

Il ~~12Z

(2) sj(t) = fij(t

i=0

4.

at time (t-

. 3

1) that flows to class j at time t

endent of t and si(t—l). Thus

(t) = qjisi(t—l)

Il

and for i 1,2,...,N

i=0,1,2,...,N

dafficult to justify and is only an approxi-
The user will have to balance the shortccmings

simplicity and utility of the resulting uodel
In the examples we present in this chapter,

and shortcomings of the fractional flow

Also, if we

nonnegative, thus qji = 0.

obtain from ¥ (1.1)

| ~~=2

fl_](t-) = q%isi(t"l)’

0 -
e fractions qji partition the stock of

ctions that flow into each class j.

N
) = foj(t) )

q..s,(t=1)
sl Ji1

for j =1,2,...,N.

' The notation (I.k) refers to equation (k) in report number I in this series.

v_”’—w—‘-——~ —-—



Let fO(t) be the vector [fOl(t),foz(t),...,fON(t)] of new appointments
during period t. Recall that s(t) = [Sl(t)’sz(t)""’sN(t)]' Finally
let Q be the N x N matrix [qji] for j and i between 1 and N,

In matrix notation equation (2) becomes
(2) s(t) = Qs(t-1) + fo(t).

In this chapter we shall treat the N-vectors s(t) and fo(t) as

(Nx1) matrices which are commonly called column vectors. To avoid

possible confusion we shall write out important sets of equations explicitly.

Equation (2) is the basic fractional flow model. Given the stocks
at time t-1, the new appointments in period t and the matrix Q it
is possible to predict the stocke at time t. The model is cross secticnal
since it uses the cross section data s(t-1) and is independent of all
stocks and flows prior to time t-1. The first term on the right hand
side of (2), namely Qs(t-1), is the legacy left over from appointments
made in periods before t. The second term, fo(t), is the vector of
new appointments in t. The sections that follow treat variations of the
basic model (2) and present some interesting applications of (2) in a

variety of contexts.




3. Fractional Appointments with Hindsight.

Let us define so(t) as the number of vacant positions at time ¢,

and

(3) A(c) =
j

I o~

. sj(t)

as the total number of positions in the system. We write s(t) for the
N-vector [Sl(t)’SZ(t)""’SN(t)] and s*(t) for the (N + 1)-vector
[so(t),s(t)]; the sumJr es(t) = a(t) - so(t) is the number of individuals
filling jobs within the organization at time t.
In this section we present an appointment policy which allows one
or more accounting points to pass before a vacancy is filled. The next
section presents an appointment policy that anticipates future vacancies.
We can distinguish the vacancies at time ¢t by their source, sirce

N o
zi=0 fio(t). First, let

so(t) {(t) be the number of vacancies at

f00
time t~-1 that are not filled during period t. The other flows are
given by (1).thus
N
A = —
(4) So(t) foo(t) + izl qusi(t 1).

"he lagged fractional appointment policy is determined by a scalar

a and an N vector a = [a,,a

0 1 2,...,aN]. For j = 1,2,...,N, we let

aj be the fraction of vacancies so(t—l) observed at time (t-1) that

are filled by appointing ind:viduals in class j. We say that a, is

" The vector ¢ 1is a row vector of appropriate length with each element equal

to 1, which is used to sum the elements of a given vector. Thus es(t) =

N s, (b).
j=1 7j

I T T



the fraction of the vacancies that remain open during period t. The
numbers aj j=290,1,2,...,N are independent of ¢t and so(t), are
nonnegative, and sum to one.

From this definition we se= that the appointments, or input flows,

are given by

foy (8) = a;5(E-1) 5 = 0,1,2,...,N.

Now for j = 1,2,...,N we define wj = as the fraction of those in

class j at time (t-1) who withdraw from the system during period t.

Finally let P* be the (N+1) * (N+1) matrix

(5) P* =i

L _

where Q is the N X N matrix in (2).
P* 1is a stochastic matrix; each element is nonnegative and the
column sums are equal to one. The status of the manpower system at time

t 1is given by the N + 1 vector s*(t) = [so(t),s(t)] where s(t) =

[sl(t),sz(t),...,sN(t)]. From our definitions the lagged constant size
model is
(6) sk (t) = Pks*(t-1).

Example 1: Consider the example of university faculty with N = 3 classes,

1 - nontenured, 2 - tenured, 3 - retired. Let the time period be one year
and assume that in one peiriod 25% of the nontenured faculty become tenured, |
257 stay nontenured and the remainder leave. Assume that 807% of the tenured

faculty stay tenured, 10% leave, and 10% retire. Assume that 80% of the

P



retired remain retired and 20% die (leave the system). Let us assume that

all new hirings are into the non-tenured ranks. Then

(¢
O
ju—
[ o]

Problem 1. Find the stock levels after one year if the current levels are:

(a) (b)

vacancies 800 828
nontenured 1000 1103
tenured 2000 1379
retired 200 _690
Total Positions 4000 4000

Notice that s*(t) gums to A (t) for all t. since

A(t) = es*(t) = eP*s*(t~-1) = es*(t-1) = A(t-1).

s*(t)
x(t)

is nonnegative and sums to one. The notation and form of (6) suggests

Thus the system remains of constant size and the N + 1 vector

an analogy to Markov chain theory. Indeed (2) an. (6) are sometimes
called Markov models. It is both desirable and natural that results of
Markov chain theory be used wh.orever applicable, but the reader should
keep in mind that we are discussiug a deterministic model and we carefully
avoid reference to probabilities. As we sha’l mention later, too deep an

analogy to the stochastic behavior of Markov chains can be quite misleading.
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4. TFractional Appointments with Forasight.

It is possible to construct a fractional appointment policy
which anticipates the vacancies that will occur in period t, and which
hires enough replacements to fill the vacated positions. With this policy
so(t) = 0 for all t.

If s(t-1) is the manpower stock at time t - 1, then 2§=l wisi(t—l)
vacancies will be created in per.od t. Of all these vacancies a fraction
aj will be filled by appointing new Inc¢ivicuals into class j. There are

no vacancies left unfilled, thus a, = 0 and 23

0 a, = 1. The flow of

new appointments in class j in period t is thus

N
(7 foj(t) = aj izl wisi(t—l)
and using
N
(3) sj(t) = ‘{ (qji+ajwi)si(t—l)

i=1

for j = 1,2,...,N.

In matrix notation, let a‘w be the N x N matrix with elements
ajwi. This is the same as a matrix product if a 1is considered as a

(Nx1) matrix (commonly called a column vector) and w is a (1xN) Matrix

(a row vector). With this convention let P = Q + a-w . Then

(9) s(t) = Ps(t-1).



Notice that P 1is a stochastic matrix (all its columns sum to 1). First,

since W and a are nonnegative, Pji = 4. + ajwi > 0. In addition

N

P =
jh B

since Z?=l aj =1 and wi U = 1 - Z?=l qji' Thus (9) has the same
mathematical structure as (6).  However, we have one less equation, a
different type of hiring policy, and a stochastic matrix in which the
effects of changes in aj or wi are not readily apparent.

Example 2: (Continue Example 1). Suppose we use the same fractional

hiring policy a, but that we anticipate vacancies, The P matrix

derived from the P* matrix in Example 1 is

75 .1 2
P = .25 8 0
0 1 8

Since state 0 (outside the system) does not explicitly appear in this
model it appears that certain flows take place which are not natural.

For example 20% of those in reticeme.t appear to return to the non-tenured
ranks., This flow is of course due vo new hiring.

Problem 2: Find the stock levels after one year if the current levels

are:
(a) (b)

r.ontenured 1800 1391

tenured 2000 1739

retired 200 870

Total Positions 4000 4000
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5. Analysis of Fractional Appointment Policies.

Both the hindsight model (6) and the foresight model (9) lead
to algebraic equations similar to the transition equuaticns of a finite state
Markov chain., This section will examine how the results of regular Markov
chain theory (Kemeny and Snell Chapter IV) can be used in our model. We
shall concentrate on the foresight model (9) the results and algebra are

ideatical for the hindsight model (6).

The reader who pursues parts(b)of problems 1 and 2 will notice the
interesting fact that an equilibrium has been reached. For some value
of s(0) we obtain s(l) = s(0) and therefore, s(t) = s(0) for all t.
This equilibrium can be explained using Markov chain theory.

If s(0) gives the initial stock levels then

s(1) = Ps(0),

s(2) = Ps(l) = P(Ps(0)) = P2s(0),
and in general
(10) s(t) = Pts(0).

Under reasonable assumptions on the matrix P equation(10) has an
interesting structure for large t. We do not wish to go into the technical
details of these assumptions since they involve concepts used in Markov
chain theory and have little pertinence to our manpower flow models. In
all the examples discussed in this book the assumptions hold. They lead
to the fact that for some t large enough Pt has all positive elements,

and that

(1) pt o V as t > o, where
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(i) every column of the matrix V 1is the same, say [vl, VZ""’VN]’

and thus
vy - vy
v v
2
vV = .2 . s
LVN YN
(ii) the vector v = [Vl’v2""VN] satisfies
v = Py
ev = 1
vi > 0 for every i = 1,2,...,N.

For large L we have, by (10), that s(t) ~ Vs(0). From (ii) we see that
Vs(0) = (vl,vz,...vN)A(O), where A(0) is the system size at time zero.
If the numbers (Vl"'°’VN) could be determined, they would tell us what
the distribution of people among classes would be after some time periods
had elapsed. Although this is a limiting result as t - = the distribu-

tion v is often obtained approximately in only a few time periods.

Example 3: Using the distribution of people in part (a) of Problem 1 as

s*(0), and using P* from example 1 the stock levels at various times

t are.:

Time 0 1 2 4 8 o
Vacancies 300 740 782 791 814 828
Nontenured 1000 1050 1003 1028 1075 1103.
Tenured 2000 1850 1742 1574 1422 1379
Retired 200 360 473 607 689 690

Problem 3: Perform the calculations in Example 3 using part (a) of

Problem 2 as s(0) and P from Example 2.
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The reader who solves Problem 3 will realize how tedious the
calculation of s(t) 1is using (10), especially for t quite large. If
we let s be the limiting vector of s(t) as t becomes large, then

by using (11) it must be that s satisfies

(12) s = Ps.

If A 1is the total system size, then

(13) =

Equations (12) and (13) comprise (N+1) equations in the N unknown
stock levels s. It is easy to show that the equations in (12) are
linearly dependent. Let e be a vector with all elements equal to one
(recall that whenever we use e we shall assume its dimension is compatible

in the equation in which it appears). Then (12) and (13) can be written as

(14) (I-P)s

i}
(e

es = 1}

If one of the first N equations is ignored, the remaining N can be
solved uniquely for the steady-state stocks s. If we drop the first

equation in (14) we obtain N equations in N unknowns.

- B _ = 0 -
-y (A7pyy) Pon | %1
p Pa. (1-p..) - Pay s, 0
15 31 32 33 31 _ .
- - -— — U
Py1 Py2 Pu3 (L-pyy?) | U Sy
1 1 1 e 1| L
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Equation (15) shows how the steady state vector of stocks depends
ca the appcintment policy.
Problem 4: Write down the equivalent of equation (15) for the hindsight
model (6).
Problem 5: Continuation of Problem 3, with > = 4000, find the steady
state stock levels.
Problem 6: Contrast the difficulty involved in recalculating steady state
stock levels in both the hindsight and foresight models when: (i) the
size X is changed, (ii) the appointment policy is changed. 0
The cross-sectional models discussed to this point assume a system
of cornstant size. If vacancies are considered as a separate state, equa-
tion (6) can be used for forecasting future stock levels in the time
periods immediately ahead, given the current stock levels and the matrix
P*, If the long-run effects of a matrix P are required, then the analog
of (15) should be used. If vacancies are assumed to be filled quickly it
may be more appropriate to use an N state model. Short-range forecasts

can be made with (9) and long-range forecasts with (15).
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6. Stationary Appointment Policies.

R-turning to equation (2) of the basic {ractional flow model,

the stock level in class j at t 1is given by

N
s,(e) = Z

qjisi(t—l) + foj(t), i=1,2,...,N,
1

1
or in matrix form s(t) = Qs(t-1) + fo(t).

Thus given an initial stock vector s(0), and rew input vectors
fo(l),f0(2),...,f0(t), the stock levels s(1),3(2),...,s(t) are eastily
calculated.

In the previous section fo(t) was chosen so that the total number
of positions in the system remained constant. In this section we consider
a different form of fo(t) which allows for growth or decay of the system.

a. Geometric Growth.

Let fO(O) = f, the input ve:tor in period 0, and let 6 be

some positive number. Now let the input vector in period ¢t be

(16) £o(0) = ofc, t=o0.

If 6 > 1 the new input growe geometrically, if 6 < 1 it decays
geometrically, and if 6 = 1 the input is constant in each time period.

Substituting (16)into (2) gives
s(t) = Qs(t-1) + 6°f, ¢ = 1.

The question of interest here is, how do the stock levels behave over time
for various values of 6? Given a starting stock level s(0) repeated

application of this equation for increasing t gives
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s(1) = Qs(0) + of,
s(2) = Qs(l) + 82f,
= Q2s(0) + Qof + 82f,
and in general
E-1 . .
(17) s(t) = Qs(0) + ( J et lod|g,
\j:o

In order to investigate the behavior of the stock levels s(t) as
t increases it is necessary to rely on some of the results of linear
algehra, and in particular some results from the theory of nonnegative
matrices. It is not our intent to reproduce this theory here, but rather
to use it as it applies to our manpower problem. The interested reader
should consult the references at the end of the repoit for details.

Let us assume that it is possible to leave the system eventually
from any class 1. This is not to say that we must leave directly from
i, but only that if one is ever in a class 1 one can eventually leave
by some route. It is hard to imagine an organization where this is not
true! Define a matrix R as the matrix Q with each element divided by
6, and write R = Q/8. Then the theory tells us that there is a number
p greater than zero and less than 1 such that if 8 1is greater than p
the elements of the matrix Rt each go to zero as t 1ncreases. We

write this as
t
(18) R+ 0 as t » w, where

0 is an N x N matrix with all elements equal to zero. Also when 6 is

greater than p the inverse of (I-R) exists and is nonnegative, with
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(1-8) ! =

o~ 8
=
[md

t

This matrix plays an important role in our models, and ve denote
it by

D(8) = (I-R) L.

In particular, for 6 =1 w2 have D(l) =D = (I—Q)—l.

Returning now to our problem of investigating the behavior of s(t),

divide (17)by 6" and substitute R for Q/6. Then

t-1 .
(19) s(t) _ Rbs(0) + ) RJ]f.
t A

8 3=0
It can be shown that ’§;é R = (I—Rt)D(G) when 8 > p. Using this in
equation (19) gives
(20) 28 < p(ae + R[s(0) - D(B)E].

o

This equation for the stock levels at time t 1is in a form which
is very useful in determining the behavior of s(t) as t increases.
Its behavior will depend on the magnitude of 6 and we consider various
cases.

Tle first case considered is when 8 is greater than 1. In this
case fo(t) increases geometrically without bounds so that the organiza-
tion keeps growing. The first term on the right hand side of (20) is
constant whereas the second term varies as Rt. But if ©6 > 1 then

t
8 >p since p < 1l; thus R -+ 0 as t -+ o, It follows that
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and that for large t we can approximate the stock levels by
o nn e
(21) s(t) ~ 6 D(B)I.

This 1s a simple result from which stock levels can be easily calculated.
However, the main purpose of this analysis is not to determine simple
methods of computation, but rather to derive simple expressions which
give insight into how the system stock levels grow relative to each other
as the input grows. Equation (21) tells us that the fractions in cach
class i stay the same eventually, and thus if s(t-1) gives the stock
levels at t - 1 then 6s(t-1) gives them at t. Each stock level is
increased by the multiplier 6 and therefore, the distribution of total
personnel among the classes stays the same.

Example 4: Consider a system with 2 classes with
Q= L- 5 8 = 1.09, f = {100,0],
3

This Q assumes 407% of those in class 1l remain in 1 in a time period,
30% move to 2, and 30% leave the system. Of those in class 2 10% move
to class 1, 707 remain in class 2 and 20% leave the system. The system
starts with an input of 100 into class 1 and none into class 2, and input
grows at a rate of 5% per year.

The matrix R 1is given by

.381 .095

.286  .667

and
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"1.86 .53
D(1.05) =
1.59 3.46

Thus D(8){ is [186,159]), and for large t we can write
s(t) ~ [.539,.461]1345(1.05)".

This equation can be used to determine s(t) for large t.
However, a.. important use is that it tells us that eventually the system
has about 547 of its people in class 1 and 46% of its people in class 2,
and these proportions stay constant even though the total number in che
system is growing geometrically.

Figure II1.1 illustrates this example and the use of the analysis

leading to equation (20). The axes represent the numbers in each class

and the vectors s(1), s(2), etc. are plotted starting with s(0) = [0,100}.

They approach a line drawn through the point (539,461) and through the

origin. Equation {20) tells us that s(t) eventually approaches this

line, independent of the value of s(0).

Problem 7: Using Q, © and f of the example, plot s(t) starting

with s(0) = [200,0]. ’
Returning to the analysis of equation(20) we now consider the casé

8 = 1. Thus the ipput in period t, f(t) 1is simply f for all t.

Note that R = Q, Rt +~ 0 since p < 1, and the stock levels stay bounded

and approach the vector s = Df, independent of the starting stocks s(0).

Example 5: (continuation of example 4). For this example the system

stocks approach 200 in class 1 and 200 in class 2 for a total system size

of 400. The values of s(t) are plotted in Figure II.2 starting with

s(0) = [0,100].
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Figure I1.1: Plot of s(t) for Example 4, with v=1.05, s(0)=[0,100]
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Figure I1.2: Plot of s(t) for Example 5 using 6=1, s(0)=[1,i00]
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Problem 8: Cazlculate s(1),s(2),... for the case s(0) = [200,0] and
plot on figure I1I.2.

The third case to consider in equation (20)is when p < 6 < 1,
In this case the new input each year decreases geometrically at a rate
slower than p. In this case Rt still converges to a zero matrix and
for large t s(t) is given by (21). Thus s(t) eventually goes to
zero, but geometrically at a rate © and with the stocks in the same
proporti. 's as given by D(6)f. The reader is cautioned that R varies
as 0 varies, so that decreasing the value of 6 from a number above
1 to one between p and 1 will change the proportions of the stocks in
each c¢'ass in steady state.
Example 6: (continuation of example 4). It can be shown that p for

Q 1in example 1 is .779. Using a 6 of 0.9 we find

44 111
R = J
_.333 778
2.57  1.29
D(-9) = )
3.86  6.42

D(06)f = [257,386] = 643[.4,.6].

After 20 periods the stock levels are given approximately by [31,44]
which are in the ratio 4 to 6. Figure II.3 shows the plot of s(t)
starting with s(0) = [0,100]. Notice that the stocks are going to zero
along the line through the origin and the point (40,60).

Problem 9: Calculate s(1),s(2),... for example 6 starting with

s(0) = [200,0] and plot on figurell.3.
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Figure T1.3: Plot of s(t) for Example 6 using 0=.9, s(0)=[0,100]
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The fouiih and final case to consider in equation (20)is when
8 <p. For example, suppose there is no new input each year and the system
is simply allowed to die out on its own. In this case 6 would be zero.
The case of firemen on the railroads might be an example. No new ones
are added to the system but the number in the system decreases through
natural attrition. It should be clear that if 6 1is too small the
system cannot shrink at the rate 6 (the example 6 = 0 illustrates this).
The value p 1s important here, since if 6 < p it is p which deter-
mines the rate at which the organization shrinks. The mathematics referred
to earlier support this. If 6 <p then (I—R)"l does not exist and
equations (20) and (21) have no meaning. The number p is a lower bound
on the rate of contraction. This is because attrition or withdrawal from
the system depends only on the coefficients qji and v, (recall
wi =1 - Z?=l qji) and is independent of the appointment rate.

Returning for a moment to the theory of nonnegative matrices we
use the following result. One can find an N-dimensional vector which we
call s whose elements are nonnegative and add to one, and which satisfies
ps = Qs.

Suppose this s 1is used as the initial stock vector s(0) (the
fact that its elements add to one is a convenience and is not necessary),
and we have no new input so that fo(t) = (0 for all t = 1. Then from
(2)

s(t)

i}
DO
wn

and from our choice of s

s(t)

S,

i
O
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Figure IL.4: Plot of s(t) for example 7 using 6=.5 and 6=0, s(()=[0,100]




Summing the elements on each side of the equation gives

es(t) = oF,

so if the system starts at time 0 with n people, after t periods it
will have npt people. This shows that p determines the speed at which
the system dies out. For if we take 6 positive but less than p, then
for large enough t et will be very small compared to pt and any new
input will have a negligible effect on the size of the system relative to
what is left in the system after natural attrition.

Example 7: (continuation of example 4). For this example p = ,779,

and the vector s 1is found to be [.21,.79]. Thus if the systew starts
with 100 people, 21 in class 1 and 79 in class 2, and if no new input is
added than s(t) = (.779)t[21,79]. If the system starts with s(0) =
(0,100] and £ = [100,0], & = .5, the values of s(1),s(2),... are

plotted in Figurell.4. The values are also plotted for the case of no

input (6=0).
Probiem 10: Calculate s(1),s(2),... for example 7 starting with
s(0) = [200,0] and plot on Figure Il.4. Repeat with 6 = 0. 0

The case 6 = 0 is of interest if a system is to undergo a reduction
in size. Consider a cutback in a manpower system from a level of, say Nl
people which has been maintained using a given constant appointment policy

f1, to a lower level, say N where this reduction must be brought about

2’

only by natural attrition. Let us assume that the distribution between
grades is to remain the same when the new level is reached. One way to

model such a change in structure is to assume that the vector of numbers
N

to be enlisted in each future period is given by f2 = N—-fl’ and that a
1
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vector s of people and positions in the system have been singled out.

Z]Z
]

1

Since es = Nl by assumpticn, we have singled out N2 positions. Atrtri-

tion from these will be filled by the appointment vector , and we assume
the same Q matrix holds. It is easy to show that this input vector

maintains the steady state distribution but with N2 people. The remaining

N. -~
1 N2
N

1
the behavior of the system in the transition period from the level Nl

people, given by a vector s, are not replaced as they leave. Thus
to the level N2 is described by case 4 described above, 6 = 0, applied
to a steady state system containing (Nl—Nz) people.

Such a splitting of the system into two groups is simply a conven-
ience which allows us to use the models developed this far. No actual
splitting need occur in practice. It is simply a convenient trick which
allows us to investigate the transient behavior of the system.

Example 8: (continuation of example 5). Assume we have a system with

400 y:ople, Q matrix as in example 4 and in steady state with f =
[100,0]. The steady state stocks are {200,200] (see FigurelL2). Assume
the system is to be reduced to a total of 300, with 50% of these in each
of the two classes. We can think of a system of 300 which continues as
before with a new input vector [75,0] in each period. This will main~
tain the subsystem at [150,150] in each period. The remaining 100 are
taken to be another system, with f(t) = 0, t > 0. Figure II. 5 gives the
stocks in each period and shows how the system approaches its new steady
state.

b. Arithmetic Growth.

Let f and g be two N-vectors (assumed nonnegative). In this

section we assume that the input vector at t is given by



s(0)
200 = s(l)/o_ _____ -0
Vd
s(2) c{
/
s(3) ¢
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!
/
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S
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150 200

Figure TI.5:

Sl(t)
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Plot of S(t) for Example 8, a decreasing organization‘
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(22) f(r) = £ + gt, t > 0,

When f(t) satisfies (22)we say we have arithmetic growth.

The stocks are given by

s(1)

b

Qs(0) + £ +

gs

s(2)

Qs(l) + £ + 2g,

Q%s(0) + Qf + Qg + f + 2g,

and in general

t t-1 .
s(t) =qQ%s(0) + § Q" g+ J ol ¢
3=0 i=0
¢ t . t . t-1 .
(23) =Qs(0)+t ) Qg- ) deg+ § ot
3=0 5=0 3=0

In order to investigate the long-run behavior of the system we need to
know how each of the terms on the right-hand-side of (23) behaves.
. . . t .
The first term vanishct for large t since Q -+ 0, and the iast
term converges to Df. The third term must be investigated (which is
done below), but as we shall see it remains finite. The second term,
however, increases linearly in t for large ., since if t 1is large
the sum is approximately Dg.
To return to tne third term, this sum can be written (without
multiplication by g)
o
I el = ¢
J_O +Q2+Q2
+ Q3+ Q3+ @3

L
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t-1 i t .
and summing each column, using zj=0 Q = (1-Q")D, gives

509 = qrx=Q%)p - ",
0

Il ~1rt

3
As t becomes large this expression approaches QDZ. Thus from (23) we

can say

limit (=(t)-tDg) = Df - QD2%g,
oo

or

s(t) ~ D(tg+f-QDg).

This expression tells us that in the long run the number in the
system increases linearly. The number in a given state i will be given
by the iEh element of the vector [f-Qdg] plus t times the iEh
element of the vector Dg. Again the importance of the matrix D = (I—Q)_1
is demonstrated.

Problem 11: Using the Q and s(0) cof problem 7, let f = [100,0] and
g = [10,10]. Find Dg and f - QDg. Plot the two lines vy = (Dg)it +
(f—QDg)i, i =1,2. Determine s(1),s(2),...,s(20), and plot each
element on the same paper as the lines.

The following problems are more advanced ones which demonstrate how
geometric growth models can be formulated as foresight or hindsight models.
Problem 12: When 6 =1, show ef = wDf. What is the interpretation of
this formula? Derive and interpret the formula in the general case 6 > p.
Problem 13: Given s(0), € =1, and a fractional appointment policy a,

determine (ef), the number of appointments per period so that in the

equilibrium system with stocks s = Qs + (ef)a we have es = es/), i.e.,
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the total in the system in steady state is equal to the current total
in the system.
Problem 14: Civen s*(0) = [so(C),s(O)], 8 = 1, and a fractional appoint-

ment policy a, determine (ef), the number of appointments per period

so that an equilibrium system with stocks s = Qs + (ef)a, 5y = WS, has
o + es = sO(O) + es(0).
Problem 15: Show that if
P = Q+f— + [w + (6-De]
ef
and s(t) - Ps(t-1), that
(i) eP = Be
t
(1i) es(t) = 8 es(0),
...y s(t)  Df(es(0)) - -1
(iii) K > (eDf) where D = (I - Q/9)
Interpret the results.
Problem 16: Show that if
- -
0 [ [wt(6-1)e]
_____ = oo 2 oS osoon
I
of :
* = =
P ef !
!
! Q |
]
- [} -
(i) the columns of P* each add to 8,
- P* -1
(ii) (ef,Df) solves s* = 5 s*, where D = (I-Q/6)

Interpret the result if s*(t) = P*s*(t-1).
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Problem 17: Show that if

T (6—1): B[wt(0-1)e]
SR i A B A
o | 8L
- ef .
! Q

then

P*
(ef ,Df) solves s* = (?;) s*

Interpret the result if s*(t) = P#*s(t-1) and contrast with problem 16.
Problem 18: It is shown in problems 16 and 17 that for the case of geom~tric

growth an equivalent hindsight model with (N+1) states can be formulated.
s*(t)

8
constant k. The stocks in any finite period t differ in the two

In both these cases s*(t) = P*s(t-1), and +Kkef,Df;. for some

models. Show that in general it is not possible to construct a matrix P*

such that s*(t) = ets*(O) for all t.
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7. A Requirements Model.

In this section the fractional flow model is used to determine
the sequence of input vectors fo(t) which are needed to exactly meet a
given sequence of required stock levels s(t). In previous sections the {
input flow vectors fo(t) were assumed to be given and the behavior of
the resulting stock vectors was analyzed. Now we reverse the problem.

Let the current time period have index zero, and assume stock vectors
s(0),s(1),...,s(T) are given for some planning horizon T. The vectors
fo(l),...,fO(T) are to be determined in order to meet these stock levels.
From equation (2) we have fo(t) = s(t) - Qs(t-1), t=1,2,...,T.

Let wus assume that the only feasible input vectors are those which are
nonnegative. That is to say, requirements can be met only with appoint-
ments. Forced attrition cannot be used.

The first question to ask is, can the given sequence of stocks
s(1),...,s(T) be met with any feasible set of appointments LO(l),...,f (T)?
The answer is yes if and only if s(t) = Qs(t-1) for each t =1,...,T.
There are T x N 1inequalities which are simple to check. Suppose our
requirements are changing geometrically, so that s(t) = ets(O), 6 > 0.

Then it is easy to see that only the N inequalities
(24) s(0) = g* s(0)

need be tested.

From the theory referred to in section 6, if 6 < p then(24) has
no solution. This simply says that if the requirements die out too
quickly, natural attrition is not enough to reduce the legacy sufficiently

to meet the requirements. Letting R = g— as in section 6 we see from (24)
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that not all starting stock levels s(0) 1lead to feasible appointments.

Let the N-vector x be any solution of the inequalities

(25) (I-R)x = O
x = 0.

Then such an x 1is a feasible starting stock level if requirements are
geometrically changing at rate 6. It is easy to see from (25) that any
x satisfying (25) is also a feasible starting stock level for any 6' > 8.

Example 9: Let Q be given as in example 4. Thus

The values of x satisfying (25) are plotted ia Figure II.6 for 6 1.05,
0.9, 0.8, and ©6 =p = .779. Note that the set of feasible starting
vectors increases with 6 and in each case forms a cone. As 0 decreases
to p, this cone degenerates to a line.

Problem 19: Show that the requirements s(t) = .9ts(0), with s(0) =
[50,60] cannot be met for any t, but the requirements s(t) = (1.05}:5(0)

can be met starting at [50,60]. Find the input vectors fo(l),...,fO(S)

in this case. J

s el

§m ] Siace

Y WO § e
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8. A University Faculty Model.

The examples discussed so far have been of simple fictitious systems
with only two or three states. These allowed us to investigate various
implications of the cross sectional model without becoming involved in
systems with large numbers of classes. In this section we describe a
cross-sectional flow model of a University faculty using real data and
appointments.

The faculty of a university can be partitioned in many ways. For
example, they could be partitioned into classes depending on their academic
department, their status, their pay grade, their age or some combination
of these. The choice of a classification scheme must reflect the intended
use of the model. 1In the example treated here the basic questions were
of rank structure. In the institution in question, namely the campus
of the University of California, Berkeley, models were required which would
describe movement of faculty between ranks and which could be used to
determine the effects of various hiring and promotion policies on rank
structure and tenure/non-tenure ratios.

As part of a larger study in University Planning, Branchflower [1970]
formulated and analyzed a model of faculty flow of the type discussed in
this chapter. The data from his work is summarized in Table II.1l, which
gives the actual movement of faculty through the thirteen ranks of the
College of Engineering at Berkeley in the period 1 July 1960 to 1 July 1968.
Since the purpose of this model is to study the distribution of faculty
in the active ranks, the "retired" class was considered external to the

system.

ARy D L P T T Lo T R
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The numbers in Table Il.1require some explanation. They are
aggregated figures over the eight year period. What Branchflower did was
to determine the stock levels as of 1 July in a given year (say 1960), and
determine how many of these either stayed in the same rank, moved to some
other rank or left the active ranks by 1 July of the following year. Thus,
he determined eight matrices with numbers of actual movements in each one.
The table given here is the sum of these eight watrices. Thus, in the
period 1960 to 1968 a total of 70 faculty in raak Associate Professor step
3 moved to rank Full Professor step 1 in a one-year period. In the eight
year period only one person obtained a double promotion from Associate
Professor step 3 to Full Professor step 2. Columns 14, 15 and 16 show
the total numbers who retired, resigned and died respectively in this
period, and the final column gives the row sums. Row 14 gives the total
number of new appointments to each rank in the eight year period, with a
total of 98 new appointments in the eight year period. The Q matrix for
this system is calculated from this aggregated data and is shown in Table
II1.2. Only the non-zero entries are shown. A characteristic of this
system is immediately obvious from this Q matrix. Since no demotions
occur and since the ranks have been ordered in increasing order of seniority
Q has a lower triangular structure; that is, all qji above the main
diagonal (all elements 9y with 1 > j) are zero. The dominant fractions
lie on the main diagonal and the one below it, showing that one either
stays in the same rank or moves to the next highest one except for rare
double promotions. This structure for Q 1is found in many systems.

The reader should question the aggregation of eight years of data

to determine Q. Why eight? Why not one, three, six, etc.? No attempt
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has been made here to do any statistical studies on this data. Such a
study would be outside the scope of this book. Our only excuse for using
elght years of data is that it was available and gave reasonable numbers
in the non-zero cells so that fractions could be calculated. The inter-
ested reader can obtain more details on the original data and questions
of the stationarity of Q from Branchflower's paper.

Suppose we take 1 July 1968 as our point t = 0. The stock levels
s(0) are given in row 14 of Table IT.}. Thus, on that datc the faculty
had a total size of 210 people. Let us assume that the faculty is to
stay fixed at this size with no vacancies unfilled. Various hiring
policies can be tried using our constant size-predictive model with
N = 13 to determine the long-run effect of these policies.

First we calculate w, the vector of fractional withdrawals from

each state from Q 1in Table 11.2. Thus

1 = (.08,.05,.05,.06,.00,.01,.02,.02,.04,.04,.01,.03,.03).

If this is appended as a row to Q the columns will each sum to one.
Suppose the hiring policy of interest is one in which all new faculty are

hired into Assistant Professor step 1. Then

a = [l,0,0,0,0,0,0,0,0,0,0,0,0],

und the matrix

P=Q+a.w

is shown in Table T1.3. Using this matrix the steady state vector v of

fractions in each state is calculated, using equation (12) and multiplying

P T T,
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this by the total faculty size 210 gives the numbers in each rank in the
long run. These are shown in row 17 in Table T1T.3.

The results obtained might come as somewhat of a surp:ise to a
university administrator. 1In steady state, if the size of tle institution
stays constant, and if the same retention and promotion structure holds
in the future, the faculty will finish up with over 417 in Full Professor
rank at overscale grade, 157 Assistant Frofessors, 14% Associate Professors,
and, since in this institution tenure is given to all grades of Associlate
Professor and above, a faculty with 857 tenured.

Such a result may not be so disturbing if the time it takes to
reach this distribution is very long. The distribution in 1968 had 7.6%
full professorscverscale, 18% assistant professors, 217 associate professors
and 827 tenured. Thus the tenure fraction is not changing much but the
average grade of faculty is increasing significantly. A calculation of
the stocks at five years (1973) and ten years (1978) is shown in Table
1T7.31in rows 15 and 16 respectively. The steady state distribution and
those at times 0, 5 and 10 are shown plotted in Figure T11.7. Also for
simplicity the percentage in each of the major groups, assistant professor,
assoclate professor, full professor (regular), and full professor over-
scale are shown in Table IT1.4.

It is clear from FigurelT.7 and Table 1T7.4 that the use of the historic
Q matrix to a system of constant size leads to a very large increase 1in
the highest ranks, even though all new appointments are made in the lowest
rank, Any other appointment policy would lead to an even more top heavy
structure. A look at the historical data (not given here) shows that in

periods up to 1968 this particular institution was expanding. We might
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Steady state s

1

L 2 & 5 B g 13 11 12 13
State

FIGURE II., 7: DISTRIBUTIOJS BLTWELN RANKS
Period Assistant Associate Full
0 18.1 21.4 52.9
5 14.8 19.0 49,5
10 15.7 13.8 45,3
Steady State 15.2 14.3 35.2

TABLE T1.4:

Overscale

7.6

16.7

25.2

41,4

PERCENTAGE DISTRIBUTIUONS BY MAJOR RANK.
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ask what the distribution among ranks would be if the system could continue
to expand. TableIl.5gives the steady state percentages in each major
rank for growth rates in new input of 5%, 3%, constant input, and a
decrease in input size of 1% per year.

It is clear from this table that a small growth rate substantially
increases the proportions in the lower ranks. The large ''pile-up" in the
overscale rank which takes place with no growth is substantially reduced
with a 3% growth rate. Notice how the overscale percentage increases if
the system starts to decrease in size.

The calculations in Table I1.5 were made using equation (21) in
the following way. The input vector £ had seven people entering in
state 1 and no one else in the other states. The matrix D(8) = (I-—Q/e)—l
was calculated using Q of Table IT1.2 and values of ©® equal to 1.05, 1.03,
1.00 and .99 for 5%, 3%, U and 1% growth. The vector D(8)f was found

and normalized to sum tu 100.
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Growth Assistant Associate Full Overscale
Rate Professor Professor Professor Professor
+ 5% 35.4 26,1 29,5 11,0
+ 3% 28,2 21.5 31.9 18.4

0 15.2 14.3 35.7 41,4
- 17 10.5 10.3 23.9 55.3

TABLE II.5: PERCENTAGE IN EACH MAJOR RANK FOR VARIOUS GROWTH RATES.
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9. Probabilistic Interpretation of the Fractional Flows.

In earlier sections qji denotes the fraction of people in class i
at the end of one period who are counted in class j at the end of the
followiryg perind. Each individual follows his own path through the system
and these paths vary greatly from one individual to the next. These
individual paths have not been considered to this point. They have pur-
posely been suppressed, in fact, since a prime aim in the choice of cur
models is to have them contain as little amount of detail as possihle in
order to answer questions of interest. 1In later sections it will be
necessary on occasion to follow individuals from class to class as they
move through the system. Each path can b~ _onsidered to be in some sense
random. By this we mean that if a person is chosen from the system and
his path examined, the successive classes of the individual and the times
when he enters the classes will not be predictable with certainty. What
we can say is that there will be a certain probability that the individual
will be in a given class at a given time, or that he entered the class at
a given time. It turns out that our earlier model will suffice if the
fractions qji are interpreted correctly.

Consider the path that an individual takes as he moves through the
system. Let us suppose he enters in period u and is first counted at
time u in class k. Let us further suppose that t periods later he is
counted in class i. Where will he be at time (t+u+l) if at (t+u) he
is at 1 and he entered in k at time u? We cannot say with certainty,
but let us say that qji is the probability that an individual who enters
in period u 1in class k and is in class i at (ttu), is in class j at

(ttutl). Notice that we are assuming that this probability is Zu’ependent
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of t, u, and k, and is the same for all individuals. This group of
strong assumptions says that the probability an individual who is in some
class i in a time period moves to class j in the next time period, is
independent of the particular time period and all previous history of the
individual. 1In addition we assume that all individuals in the organization
behave independently of each other. In the language of probability theory,
each individual follows a path which evolves according to the laws of a
homogeneous finite state Markov chain.

These are very strong assumptions and in many cases are unrealistic.
As uve shall see they do lead to the fractional flow model of earlier
sections, However, the reader shwould understand that though these detailed
assuiptions lead to the earlier model, that they are not required to hold
in order to justify the fractional flow mod:l. In mathematical terms they
are sufficient to lead to the earlier model but not necessary. Here is a
case where a too detailed look at the real system, by trying to describe
individual flow patterns, can lead to confusing and unnecessary assumptions.
The art of good modelling is to go into only enough detailed structure as
is necessary for the particular application. For a retirement model des-
cribed in section 10 we need a probabilistic interpretation. For a faculty
flow problem in section 8 the probabilistic interpretation was not required.

The symbol sj(t) has been used earlier to indicate the stock
level in class j at time t. Now it must be interpreted as the expected
stock level in j at t. The upper case letter Sj(t) is the random
variable which denotes the (uncertain) stock level, and E[Sj(t)] = s,(t).

J
If the stock levels at t are given it is easy to find the expected

stock levels at (t+l) in terms of these. If there are S (t) people in
i
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class 1 at t, the expected number of these in j at (t+l) will be
Si(t)qji. This holds for all i =1,...,N, and if we add in the new
flows into j from outside we have

N

E[Sj(t+l) 5{6),...,5.(0)] = 121 qjiSi(t) + foj(t+l).

Taking expectations of the stocks Sl(t)"°"SN(t) gives
qjisl(t) + foj(t-*-l)) j = 1)2)"')N)

or in matrix aotaticn
(26) s(t+1) = Qs(t) + fo(t+1).

This is the same as the basic flow equation (2) in the fractional
flow model. Thus, in terms of expected values the Markov assumptions lead
to the fractional flow model. One could postulate a number of detailed
models which would lead to equation(26) in terms of expected values. In
many applications the only variables of interest are these expected values
and many of the detailed assumptions are unimportant in calculating these.
However, if variances and covariances are to be calculated to estimate the
effects of uncertainty the reader must be much much more careful in the
choice of a model.

Many of the results in earlier sections have a probabilistic
interpretation in terms of the Markov model. For example let us look at
the matrix D = (I—Q)_l. First let us look at the (j,i) the element
of the matrix Qn for some fixed n > 1. Call this qjg). Then from

matrix multiplication we have
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(n-1)

(n) _
Tk Yki-

i o~

1
. n R . C e
This equation siiows us that qji) is tue probability that an individual

is in class j a periods after being observed in class i. How since
-1 : ¢oon .oy Lh
(1-Q) can bc written as . Q, the (j,i)— element of D can
n=0

be written

- (2) (3) (n) e e g
dji = qji + qji + qji + ...+ qji + ..., if i # 3.
(27) and
- (2) (3) (n)
dii =1 + qii + qii + qii + ...+ qii + ...

Suppose an individual enters the system in class i. How many
periods can he be expected to spend in class 1? He spends the first one

there since he entered in this state (by our accounting assumptions). He

(n)_

. . Thus, the second
ii

spends the nEE period in i with probability ¢
equation in (27) gives the total expected time an individual spends in i
(that is, expected number of periods) if he enters in i. For j # i he
cannot be in j the first period. Thus, the first equation in(27) holds
in this case. The matrix D gives us the expected durations an individual
who enters in a given state spends in each of the states.

Problem 20: Show that eD 1s an N-vector which gives the expected number

of periods an individual spends in the system if he enters in a given state,

¥
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10. A Retirement System Model,

The theory of cross-sectional manpower flow is used in this section
as the basis of a model of a retirement system. This retirement system
model allows a decision maker to investigate various retirement policies.
Concepts developed in section 9 are used, and an early retirement scheme
is investigated as an illustrative example.

The retirement model rei.tes the manpower flow process to the
financial parameters that describe the retirement system. First we calculate
the expected present value of the annuity that an individual will receive
discounted to the time of retirement. Then we calculate the present value
at retirement of all contributions to the individual's retirement fund,
and match this with the annuity.

In this section time period t 1is assumed to be the period in which
retirement takes place, and periods are assumed to be of one year duration
for convenience. If an individual entered the system in period (t-k) it
is assumed his length of service is k (note that it is actually between
(k and k + 1). A person who enters in period t (and is then counted
at time t) has length of service zero. We shall say that a person who
is in class 1 and has length of service k is in state (i,k).

Let ai(k,t be the annuitv paid an individual who retires in
period t while in state (i,k), and let mj(i,k) be the probability
that this individuval will receive exactly j annuity payments in retire-
ment. Note that Z?=O mj(i,k) =1 for all states (i,k) and let Mok

2 . . . . ; -
and o be the mesn and variance of this distribution respectively. If

ik
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the valuce of future annuity payments is discounted to the retiremen: period
t using a discount factor B, and the retired individual receives exactly

j payments, then the value of his payments at retirement is

. .
a, (k,t) (L+8+B2+. . .+8" Iy - a, (k,t) =)

Now unconditioning on j, the expected value at retivement of all payments

to a person who retires from state (i,k) is

(28) 8Inj (1,10 ]a, (k,0)/ (1-8).

—
bt
]

Il o~ §

j=0

If there is any variance in the lifetime of ar individuol after
retirement we would expect this to affect the total of all annuities paid
out if the discount factor B is not equal to 1.
Problem 21: Using (28) show tha. if the discount factor B is 1 (no dis-
counting of future monies) then the total expected value of all payments
is simply the value of a single payment times the average number of pay-
ments; it is independent of the variance of the distribution mj(i;k).
Explain this result. W

It is realistic to assume that B8 is less than, but close to, one.
By using a Taylor series expansion of (28) about the point B =1, and

ignoring terms in (J—B)J, j 2 2, the total expected present worth at

retirement of annuity payments can be shown to be well approximated by

432
ik 2 ik Pi

k—uik)]ai(k’t)'

Let vi(k,t) be the expected value of the retirement fund in

period t of a person who retires from state (i,k). By equating fund
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size to payments we sce that the annuity he can be paid is given by

v, (k,t)
(30) aj(k,L) I S | S ™ E

Hik © ']";ﬁ CHR TR

The quantity vj(k.t) is of course nade up of contributions to
the fund during th- person's time in the organization. It will depend on
his previous salaries, which in turn will depend on the individual's
detailed movement between states. 1t is this quantity vi(k,t) which we
noo investigate, and we shall need the cross-scectional flow model with
its probabilistic interpretation.

Let ci(k,u) be the contribution to the retirement fund (cemployer
plus cmployee) in period u  for an individual in state (i,k) in that
period. 1f we consider a sample history of a person and assume that the
fund carns interest at rate a, then we can trace the growth of the
retirement fund over time.

First we see that vi(O,u) = ci(O,u), the contributions for a
person in period u who entered in that period iu class 1. Using con-
ditional probability arguments we find an expression for the expected
present value of the fund.

Given that a person is now (period t) in state (j,k) and was

in state (i,k-1) in t - 1, then the expected value of the fund is
(31) cj(k,t) + (l+ﬂ)vi(k—l,L—l).

Let pii(k) be the probability tnat an individual who is now in state

*
(j,k) was in state (i,k=1) in the previous period. Note that for

KN
¥

Care must be taken here. 1t may not be possible to be in some state (j,k),
depending on how people enter the system and how promotions are made. In
Lthis casce we would bhe conditioning on events which occur with probability
zero, This technical difficulty can easily be overcome in a number of ways.
For simplification in exposition we assume that all states (j,k) for which
vj(k,t) is defined can be obtained with positive probabitity.
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N
k21, z pij(k) = 1, and we are assuming these probabilities are

i=]
independent of the period. We return to this problem later. Now uncon-

ditioning (31).

N
L(kyt) = ¢, (k,t) + (14w C(k=1,t-1)p. . (k),
vilot) = e la,r) + (o) [ov( Py 5 ()
i=1
or, using vector/matrix notation,
(32) vik,t) = c(k,t) + (1+2)v(k-1,t-1)P(k), k > 1.

Here, wv(k,t) and c¢(k,t) are N-component row vectors, and P(k) is
an N X N stochastic matrix (each column sums to 1).
By successive substitution(32) is solved for v(k,t), and we

obtain

=~

. ]
(33)  v(k,t) = J A+ c(k-i,t-i) T P(k-i+l), k=0,
j=0 i=1

where an empty product is taken to be I, the identity matrix, and

P(k-14+1) = P(k-j+1).P(k-j+2).++.P(k), j 2 1.
1

n = e

i

Equation (33) gives the expected value of the fund for all states
(i,k) in terms of the contribution vectors c¢(0,t-k),c(1l,t-k+l),...,
c(k,t), the interest rate o, and the matrices P(i), i = 1,2,...,k.
It remains to investigate these matrices, which are of course relateq to
the underlying cross-sectional flow model (which we have not used to this
point).

Consider an individual who entered the system in period t - k
and who is in class j at time t. Let pij(t’k) be the probability

that this individual was in class i at t - 1. We wish to discover



what assumptions are necessary so that pij(L’k) will be independent of
t, so that pij(k) is well defined.
Define 7Z(t) as the person's class at time t, and E as the

period of entry, both random variables. Then
pij(t,k) = P[Z(t-1) = i|z(t) = j , E = t-k].

From conditional probability arguments,

PLz(t) = jla(e-1) = i,E = t-k]P[Z2(t~1) = i|E = t-k]
(34) Pij(t’k) - P{Z(t) = F[E = t-k]

From the Markov property of our fractional flow model

(35) P{z(t) = j|2(t-1) = i,E = t-k] = qji’

independent of k and t. Now define
z, (t,k) = P[z(t) = ilg = t-k].
Now zi(t,O) = P[a person who enters in t does so in class 1i].

Therefore, if fOi(t) is the flow f{rom outside the organization into

class 1 in period t, and fo(t) is the N-vector of these flows,
(36) 2, (1,0) = f () /el (1),

since efo(t) is the total new input in period t. By a straigttforward

conditioning argument

e o=t

zi(t,k) =

j qjizi(t—l,k—l),

1

]

or in vector notation

(37) z(t,k) = Qz(t-1,k-1) = ka(t~k,0).
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From this ¢quation we se2 that z(t,k) 1is independent of t if
and only if z(t-k,0) 1is independent of t. For this to be true vwe can
see from (36)that the fraction appointed into any -iass 1 should be the
same for all periods. This does not say that we have to appoint the sane
number into i 1in cach period. Indeed this can vary from period to
perio ; but the fraction must stay constant.

We now assume that for any period u

1
o

a, = fOi(u)/etO(u), i s oo, N,

1

and let a be the N dimensional column appointment vector. Then from

(37)
k
(38) z(t,k) = Qa.
Using this with (35) in (34) we bR
(39) pij(k) = pij(t'k) = qjizi(t_l’k_])/zj(t’k)'

Equations (39) and (38) show that the matrix P(k) depends only
on Q and a, and (39) can be written in matrix form.

For any vector x = (X ,Xo), let  [x]

N represent the
2 N p

y X

1 DG

N x N matrix whose diagonal elements are the same as the corresponding

elements of the vector, and all off-diagonal elements are zero. Thus

Xl 0 ... 0
[x] = O'Xz '
DG . 0
0. - )
i ) 0 XN.H

¥
Note that trom ou- assumplions zj(t,k) >0 for all j and k.



Also let Q' denote the transpose of Q.

*
Using (38) and (39) we sce that

k- -
P = 1Q T al @il k=1

This representation of P(k) ¢ early shows its dependence on §

and a. This can now be used in (33) to show that

(40) vt = ) O eteq, e Ta) et nefar 1

it S~

=0

Equation (40) now gives the cxpected value of the fund for each
state  (i,k) in terms of the interest rate a, the contributions
c{(0,t-k),...,c(k,t), the appointment vector a4 and the transition
matrix Q.

Problem 22. Assume that o1l new admissions are made into class 1. Thus

a is the column vector {1,0,...,0]. Use equation (40) to show that for
this case

n

(o)) Y o (k-j,t-1)q
0 2=

_ (1) (k=3), (k)
(sl = iy gy

J

o~ 7

arnd interpret this result. (0

In many institvtions contributions are related to salary. Let us
assume that a fraction 5 of an Individual's salary is placed in his
retirement [und cach period, and let si(t) be the salary of an individ-
nal in class 1 at t, independent of his length of service k. Let us

further assume that salarices have been growing at rate y per year.

* k
The inverse of  [Q a] . exists if all diagonal terms are positive. This
is true if all states” (j,k) can be held with positive probability.
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Then the contritution in period L - j of 4 person who was then in class

i would have been

If s(t) 1is a row vector of current salaries by class, then (40) becomes

§ y i
(7 197 Ta) ]

o [ 0 al )

~ )

(41) vik,t) =8 DG

j=0

Problem 23. Interpret (41) when the salaries have been increasing at the

same rate as the interest rate on the retirement fund. [

Fquation (41) can now be used to calculate vi(k,t) and this used

in equation (30) to calculate the annuity ui(k,t). We illustrate the model

in analyzing alternative retirement and appointment schemes tor a univer-
sity faculty.
A university faculty model is formulated in which faculty can be

in any one of the following 15 classes:

Class Description

1 Nontenure

2 Tenure - Age 30 to 34

3 Tenure - Age 35 to 39

4 Tenure - Age 40 to 44

5 Tenure - Age 45 to 49

6 Tenure - Age 50 to 54

7 Tenure - Age 55 to 58, Low salary

8 Tenure - Age 59 to 61, low salary

9 Tenure - Age 62 to 64, Low salary

10 Tenure - Age 55 to 58, Medium salary
11 Tenure - Age 59 to 61, Medium salary
12 Tenure - Age 62 to 64, Medium salary
13 Tenure - Age 55 to 58, High salary
14 Tenure - Age 59 to 61, High salary
15 Tenure - Age 62 to 64, High salary.
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Table I1.6 gives the basic fractional flows between the 15 classes
of faculty. We call this QO. Table I1.7 gives the fractional flows
after an early retirement scheme has been emplemented. We can this Ql'
Table I1.8 contains three different appointment vectors and a vector s
of current salaries. The a_pointment vector a, 1is the one used before

0

early retirement, a1 is the one used after early retirement, and a2 is
the case where all appointments are made into non-tenure. It was assumed
that salaries had been growing at 4% per year and the interest rate on the
fund was 6% per year. The fund was incremented with 167 of the salary level
each year,

Equation (41) was solved for 3 cases, and the results for classes
9 (tenured low salary, ape 62-64) and 15 (tenured high salary, age 62-64)
for the expected fund values are given in tables I1.9 and 11.10 Table II.11
shows the steady state stock levels for cases 1 and 2. These we calculated
using the "hindsight" model of section 3 and a total system size of 413
faculty. For case 1 the calculations were made using Q0 and an- For

were used, and for case 3 Q0 and a, were used.

case 2 Ql and a 9

1
All other parameters were kept the same in the three cases.

Notice that with the implementation of the early retirement scheme
the expected fund size is almost unchanged, even though therzs are large
differences in the diagonal elements of QO and Ql for classes 7 through
15. However, the steady state distribution of faculty has changed con-
siderably, with a higher percentage of younger faculty. The slight decrease

in retirement fund size (about 1%) may be tolerable when viewed in light

of the improvement in the distribution of faculty.
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Length of Service Present Value of Fund
(vears) Case 1 Case 2 Case 3

- e "
20 94,579 92,114 86,787
25 117,895 115,341 111,524
30 143,897 141,085 138,387

b— - ——— i — —— -—{
35 172,578 169,378 167,584
40 204,029 200,347 199,337

- e N —

Table IT1.9:

length of Service

{years)
20

25

30

Retirement Fund

for Faculty in Class 15 at Retirement.

Present Value of Fund

99,799

124,306

35

40)

Table T11.10: Retirement

L -

151,166

180,671

e oo o L

| ..~

Case 2

Case 3

74,015

99,613

96,203

123,913

120,564

150,648

147,319

180,047

176,705

Fund for Faculcy in Class 9 at

Retircment.

61
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Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Vacancies
Case 1 110 19 38 39 42 40 11 9 15 10 8 12 10 10 10 30
Case 2 120 21 43 43 46 43 9 3 1 9 4 2 11 9 7 34

Table IT.11: Steady State Stocks Without and With Early Retirement.




63

Case 3 is added for illustration. It shows that if a policy
change were made to appoint only non-tenured faculty, this would change
the expected value of the retirement fund even if no changes were made
in the fractiona:l tlows. Tt is interesting to see that for the cases
studied the expected value of the fund decreases if appointments are
made only into non-tenure.

Figure T1.8 shows a plot of the fund value for classes 9 and 15

for increasing length of service at retirement.

In conclusion, this section has related some [inancial variables
to a cross-scctional manpower flow model and indicated how to calculate
some relevant expected values such as the value of a retirement fund.
The spirit of the model is more important than the particular formulas
and examples presented here. It can be possible with a cross-sectional
flow model to study financial questions related to manpower policy. The
particular model, classification scheme, and variables under study, will
depend on the policies to be investigated and on the questions you wish

to answer about the system.
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11. Student Enrollment Forecasting Models.

0Of the many areas of application of the fractional flow model, the
authors have gained considerable experience from its use in student
enrollment forecasting of university undergraduates. Let us consider the
classes of students to be {reshmen, sophowores, juniors and seniors; thus
we have a four-class model. The time periods are taken to be semesters.
We shall find that a number of problems arise in the application of a
simple fractional flow model. These will be Aiz_ussed as they arise.

The model will then be used to predict student attendance patterns, and
will be checked against a set of independent data on such attendauce
patterns.

The first problem encountered is that the natural accounting and
enrollment period in a university student model is either the semester
or quarter. For simplicity we use the semester here. The reader should
have no trouble in extending the results to a quarter system.

The fractional tlows between classes from the fall semester to the
spring semester differ considerably from those betwcen classes from the
spring semester to fall semester. 1If 1ittle or no new input of students
takes place in the spring, and one is only interested in forecasts for
the tall, the detailed (lows in intermediate scmesters could be ignored.
However, in the institution we studied (the Berkeley campus of the Univer-

sity of California) significant new input occurs each spring. Table T1.12

shows the new input into the four classe iom the Fall of 1962 to Fall
of 1966. Table Il.13shows the fractionua’ . ws ¢ and Q* between classes,

from Fall to Spring and Spring to Fall respectively.
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(1) (2) (3) (4)

Semester Freshmen Sophomores Juniors Seniors Total
}"‘"“" I — '~‘!"““‘" TTTmETms ommsen s e e e “—"‘-—‘r'-'—‘ mm————— [“’_'__"—'_"'
Fall 1962 3525 678 14316 184 5803
Spring 1963 328 187 324 42 881
Fall 1963 3620 738 1569 199 6126
Spring 1964 346 209 408 45 1008
Fall 1964 3427 602 14472 202 5673
Spring 1965 256 180 452 : 49 937
Fall 1965 2579 390 1042 i 125 4136
Spring 1966 291 210 476 ’ 66 1043
Fall 1966 3053 733 1418 205 5409

Table IT.12: New Admissions, University of California, Berkeley.

(1) (2) (3) (4)

(1) [ .926 7]
(2) | .001  .857

Q = 5
(3) L0300 .902
(4) | .005  .789 |

(1) (2) (3) (4)

(1) [ .103 N
(2) .699 Y
Q‘.'\‘ =
(1) .792  .158
(4) 749 0302

Table 11.13: The Fractional Flows for ¥Fall/Spring and Spring/Fall.
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Let time t = 0 be the start of a fall semester (end of a spring
semester; the summer period is ignored), and let the current enrollments
be given by the 4-dimensional vector s(0). Then in the spring enrollments

will be

s(1) = Qs(0) + (1),

where (1) 1is the vector of new admissions in the spring. Now

s(2) = Q*s(]l) + £(2)
= Q*Qs(0) + Q*f (1) + £(2) -
If we let Q*Q = _, then the enrollments in successive fall quarters
are given by
(42) s(n) = 0s(n=2) + Q*f(n-1) + f(n), n even.

The reader should now sec how the basic model (equation 2) can be modi-
fied for cyclic situations.

Problem 24. Show that the stocks in successive spring semesters are given
by

s(n) = és(n-?) + Qf(n-1) + f(n), n=3,5...,

~

where 0 = QQ*.
Problem 25. Determine Q and é for the data in Table IT.13
Problem 26. Determine the forecasting formula for successive fall qﬁarters
assuming (1) three quarters operation, (.) vear-round operations in 4
quarters. i

A second problem was found when the university data was analyzed.

A significant number of students have breaks in their attendance (in
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addition to the obvious summer periods) betweer initial entrance and
graduation, campus transfer, or drop-out. It szems that students often
take a semester off and return at a later date to finish their degree
program. However, how is one to distinguish between a student who has
left permenently, and one who is on a temporary 'vacation'? Indeed, the
student himself may not know which state he is in! Records are kept which
distinguish "continuing” from "returning" students once they are re-
admitted., It was found that this data could be used to estimate the
fractiornal {lows to and from a 'vacation' srate. Thus a 5-state model
is postulated to more realistically model the students' attendance pat-
terns. For details the reader should consult Marshall, O!'iver and
Suslow [1970].

Table Ll.1l4shows the fractional flows between classes, where state
> represents the 'vacation' state. Notice that of those on vacation in
a fall semester .632 stay on vacation in the spring; but of those on
vacation in the spring only .342 stay on vacation the following fall.
This shows that students prefer to return to their studies in the fall
each year, a not unexpected observation.

One could now use either the 4-state or 5-state models in equation
(42) to forecast student enrollments, and more will be said about this
later in this section. At this point we use the model to investigate
attandance patterns, and check the results against an independent -set of
data. The attendance patterns of all students who entered the Berkeley
campus for the first time in the fall semester of 1955 were studied, as
were those of the similar group who entered for the first time in 1970

(for details see Suslow, et al [1968]). A group with a common



.913 .040
.001  .831 .074
qQ = .031  .852 .185
.005  .757  .099
L .G12 L0206 .050  .032  .632 |
[ .067 .084
.699  .039 145
Q* = 792 .059 234

68

. 749 .207 .193

L -0136 076 . 100 104 .342

Table T[11.14: Fractional Flows for the 5-state Model.

characteristic such as entrance date and state at entry is called a
'cohort.'

Table 11.15 gives the numbers and fractions of students in both the
1955 and 1960 cohorts who attended a given semester after entrance. The
fractions are plotted in Figure 11.9.

A striking feature of this data is its stability over time.
Attendance on any given semester after entrance varies little from the
1955 to 1960 group. Changes in University probation policy for freshmen

and sophomore students appears to explain the small discrepancy in the

third and fourth semesters (see Suslow, et al [1968]).
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. 1955 Entering Group 1960 Entering Group
Semester
R T e e B T
after Nube Frnvrign Numbe r bréctxgn
. S . at tending . 2 P F ' attending
. Specific vl . Specitic of .
Entrance ] gpiven . . . . given
semester | students semester students . D
semester semestLer
U 5 SN S | SN | I S |, N | B, PO [, D S S | A
TR 1955 2,067 972 F9e0 | 3,228 978
2nd S 1956 1,924 L9059 S 1961 3,002 910
3rd F 1956 1,585 L 706 F 1961 2,331 .706
4th S 1957 1,455 .684 S 1962 2,104 .6737
5th F 1957 1,260 L5973 K 1962 1,891 573
6th S 1958 1,194 .562 S 1963 1,799 Y
7th F 1958 1,114 524 1963 1,753 .93l
gth S 1959 1,058 .498 S 1964 1,690 .512
9th 7 1959 424 .199 F 1964 6973 210
10th S 1960 276 . 1130 S 1965 461 L1139
11th F 1960 107 .050 F 1965 182 .055
12th S 1961 77 .036
L3th F 1961 37 017
14th 5 1962 34 .015
15th F 1962 25 .011
16th S 1963 15 .007

Table IT.15: Number of Students Attending any Given Semester.

An important point to note is that the behaviour of a cohort appears
to be independent of its size, a feature which may prove very useful when
major changes from today's admission policies are considered. The cohorts
of 2126 and 3290 students have essentially the same attendance character-
istics.

Table T1.16 gives the numbers and fractions of students in each
cohort who attended without interruption at least the given number of
semesters.  The fractions are plotted as the lower curve in Figufel[.lO-

This curve has essentially the same shape as thac in Figure 11.9
with a sharp break point at the eighth semester and an increased tendency
lor a student to leave the system aftcr one or two years. We again have

close agreement between the 1955 and 1960 data.
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1955 data

1960 data
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Figure II.9:
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Semester after Admission

Fracrtion Attending given Semester after Admission.



71

Table 11.16 gives the fractions of students from each cohort which
spent at least a given number of semesters in the system. This includes
semesters in attendance and semesters ow vacation.

These results are plor-ted => the upper curve in Figurc 17.10. Both
curves in Figure 1].10would coincide if students had no vacations but the
large difference between the two curves (15% by the 8th semester) shows
that a significant proportion of students interrupt their consecutive

attendance patterns by vacations.

Returning now to our fractional flow model, we first calculate
. , th .
the fraction of students attending the n— semester after entrance in
. st
a fall semester as a freshman. For the 1— semester after entrance
(that is, the entering semester) we take it to be 1. For the second semes-
ter the first column of 0O gives the fractions of these freshmen in each
state. Summing over the four attending states pives the fraction in
attendance.
. . th
Problem 27: Show that for n even, the fraction attending the n— semes-

ter after attendance is given by summing the first four elements of the
_n ~n-1
firsc column of 0 2., and for n odd, Q Z
Table I1.18 shows the calculated probability of attendance in each

semester for the four state model and this is plotted in Figure IT.11 . The
calvulated distribution agrees well with that of the 1955 and 1960 fresh-
men cohorts. However, since there are no vacation states, attendance,
consecutive attendance and elapsed time are the same in this model and

we naturally get poor aprecment with the cohort data for consecutive

attendance and elapsed time.




1955 Entering Group
(2,126 students)

1960 Entering Group
(3,298 students)

Number of
Consccutive
Semesters
Completed Number of
Students
e

1 2,067

2 1,923

3 1,554

4 1,373

5 1,112

6 1,027

7 883

8 819

9 222

10 112

11 15

Fraction
e e

.972
.904
.730
.645
.523
.483
415
. 385
.104
.052
.007

Number of

Students

Fraction

Table [1.16:

w N —

P

XX~

11
12

Students Completing Each Consecutive Semester

With no Interruptions in Attendance

Number of Semesters
in the System

1955 Data 1960 Data
- -
.976 .984
.929 .926
.804 .769
.752 .718
.655 .660
.625 .634
.565 .589
.528 .556
.207 .234
.129 .155
.033 .053
.019 .000

Table T1I.17 : Fraction Completing at Least a Given

Number of Semesters.

72
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Seinester

Fraction in Fractions from
Attendance 1970 Data
R P -
1.000 .978
.926 210
. 743 . 706
La64 .637
.593 .573
L5734 .545
475 .531
. 395 512
L2173 .210
173 .139
.073 .055
.0h9 -

Table 11.1&: Fraction in Attendance for the 4 State Model.

Table 11.19:

O . S
Semester I Attending n Consecutive At least n
n Semester n Semesters Semesters
] 1.000 1.000 1.000
2 <914 .914 .926
3 .709 .700 . 746
4 .628 607 .669
5 541 | 501 .601
6 483 428 .546
7 A4 . 339 482
8 . 350 .263 407
9 .178 .088 .232
10 L 160 067 .201
11 .097 017 126
12 .089 .013 111
R D S " o]

Calculated Fractions for the 5 State Model.
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Figure I1,11:
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Table I1.19 gives the calculated distributions of attendance,
consecutive attendance and elapsed time for the single vacation state
model. The distribution of attendance is plotted in FigureII.12 for
comparison with the cohort data,

The results for the fraction in attendance do not agree as closely
as those obtained with the four state model. The major discrepancy occurs
in semesters seven and eight. Very good agreement is found in the first
five semesters. This characteristic is found in the distributions of
consecutive attendance and elapsed time also, although in these two distri-
butions the five state model naturally gives an improvement over the four
state.

The consistently poor agreement near the break at semester eight
requires explanation. Remember that we are comparing fractions calculated
from a cross-sectional model, with fractions observed from longituainal
studies on students. The cross-sectional data includes students who enter
in all classes, and a feature of the moder is the assumption that a student
who enters as, say, a junior, behaves in the same way as a student who
entered as a freshman when he becomes a junior. Thus the cross-sectional
data includes numerous different cohorts superimposed at one time, and
it is difficult (if not impossible) to identify to which cohort a student
belongs using the available data.

One of the main purposes for our including this example of student fore-
casting is to motivate the types of models presented and analyzed in report
number IIT. Perhaps by keeping a little more data on an individual in addition
to his current class, such as how long he has been in the system and what was
his class at entry, his longitudinal behavior patterns can be used as the

basis for a model. As we shall see, the longitudinals models tend
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to better represent actual movement of individuals through a system,
but the price paid is in larger amounts of 1less frequently available
types of data.

To end this section we include enrol lment predictions for the
yvears 1962-1966 for the Berkeley campus by Freshmen, Sophomores, Juniors,
and Seniors, using the four and five state models. Actual enrollments
are given for comparison. In the predictions, new inputs were taken as
fixed and known and only the continuing portions were calculated. The
results are given in Table 11.20.

In order to attempt to measure the suitability of each model in
o simple manuer two types of errer are defined and cowmputed for each
model. We first compute the absolute error by taking the absolute value
of the difference between the actual enrollment and the predicted value
for a given stato and vear and summing over the states. These are given
in Table 71.21. Secondly, we find the mean square error for each year
group in the usual manner for the four ctates. These are given in Table
11.22.

In terms of absolute error, the five state model appears to be
superior to the four state model over short prediction periods. Our
results show that tor longer periods the four state model gives better
resul ts.

In terms of absolute error the five state model seems to be cénsis—
tently better, although there is little difference in them at five years.
If enrollment predictions are required over one or two years in the

future, it seems tnaat the five state mosel s the most desirable one.



4 STATE
FRESHMEN 5 STATE
ACTUAL

4 STATE
SOPHOMORES 5 STATE
ACTUAL

4 STATE
JUNLORS 5 STATE
ACTUAL

4 CTATE
SENIORS 5 STATE
ACTUAL

4 STATE
TOTAL 5 STATE
ACTUAL

79

1961 1962 1963 1964 1965 1966
ﬁ___u~-_rn.*~__--_-._."“___.mu_‘ﬂ_.,”m___r_ ______

3930 4042 3865 2986 3388

3914 4032 3861 2997 3428

3843 3972 4106 4186 3307 3633

3790 3899 3875 3479 3245

3748 3866 3855 3480 3289

3778 3649 3846 3468 3349 3126
e B P

4809 5049 5026 4619 4689

4743 4927 4930 4529 4660

4180 4762 4806 5429 5311 5624

4311 4859 %053 5220 5078

4289 4772 4899 5080 4949

3943 4210 4789 4585 4581 4364

16840 [ 17849 |[17819 16304 | 16400

16694 | 17597 | 17545 16086 | 16326

16593 (17547 | 17668 16548 J 16747

Table 711.20: Enrollment Forecasts and Actual Enrollments, 1962-1966.



MODEL 1962 1963 1964 1965 1966

4 STATE 247 107 151 ] 244 347
5 STATE 101 50 123 j 462 421

Table IT1.21: Calculated Absolute Prediction Errors.

MODEL 1962 1963 1964 1965 1966
4 STATE 92 133 401 501 603
5 STATE 70 72 368 493 579

Table 11.22: Calculated Mean Squared Error.

80
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12. A Vacancy Model.

In previous sections we have considered stocks of manpower in
various classes bhut have not specifically concerned ourselves with posi-
tions which people fill. In this section we consider an organizat.on
where both positions and people are accounted for.

Let xi(t) be the number of class i positions available at time t,
and let Si(t) be the number of people in class i. The number of vacancies
in class i at time t 1is given by vi(t) = xi(t) - Si(t)'

We assume the flow of positions is governed by the simple equation
(43) x(t+1) = x(t) + y(t+l),

where yi(t+1) is the number (perhaps negative) of new class i position
that are made available in period ¢t + 1. If yi(t+l) is positive,
positions are added. If negative they are removed.

The flow of manpower in period t + 1 is determined in large
part by the vector of vacan.ies v(t) that exist at time t.

We assume that all of the vi(t) vacancies in class i are filled
during period t. iloreover, we assume that a fraction rji > 0 of these
vacancies are filled by individuals from class j for j = 1,2,...,N,
and a;, 2 0 1is the fraction of vacancies filled by new appointments.

The fractional flow assumption is

#

(44) fji(t+l) r,ivi(t) for j# 1

]

fOi(t+l) aivi(t).

Since we assume all vacancies are filled we have
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)
r +a, = 1.
- i
=1

Tne inflow of people into rank i in period t will be
£y = ) + .
v, ( ) (‘z rji)vi(t) aivi(t)

The outflow of people from class i to other classes will be:

e~z

r,,v.(t) + £, (t+l).
p i iQ

J

When these relations are combined we find

N
s, (t+]) = s (t) + vi(t) = 321 rijvj(t) - fio\c+l).

Let hi(c+l) = fio(t+l), the flow out of the system from 1 in t+ 1

and R the matrix of elements rij' Then

(45) s(t+1l) = x(t) - Rv(t) - h(t+l).
Subtracting(45) from (44) we obtain

(46) v(t+l) = Rv{(t) + h(t+l) + y(te+l).

Equation(46) determines the flow of vacancies in the organization. Although
it is possible to have yi(t+l) < 0, we assume that vi(t) >0 for all
i and t. Thus we can obtain from (46) an explicit lower bound on y(t+i),

the change in positions in t + 1;
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y(t+l) = =(Rv(t)+h(t+1)).

Positions cannot be removed faster than this without causing negative
elements in the vacancy vector.
The equilibrium solution of the system given by (46) is easily seen

to be

(47) ve(G-R" h, y=o0

1}

From (47) we can calculate the equilibrium flows: f,, = for i # i,

r,,v,
1] 1] 1
and fii = s, + vy Thus the average lifetime an individual spends in

class i is given by

1 n
i 1 - f,./s, v, '
ii’ "1 i

-

The model above operates with hindsight. We observe the vacancies
at time t, and act during period (t+1)o f£ill the time t vacancies.
These actions in turn create new vacancles at time t + 1. An alternate
foresight model is possible which eliminates vacancies by planning ahead.
Although the assumption of being unable to eliminate vacancies is unreal-
istic, the model that we obtain is mathematically simpler, and the
policies are more forward looking.

Let zi(t+l) be the number of class i positions filled during. period
t + 1 (recall that period t + 1 is the interval (t,t+1]). It follows
“hat

(4) 2, (t+1) = '2' £,y (e4D).
j#

T N I T T T T YT T e T O
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Let for j =1,2,...,N (j#i) be the fraction of these pnsitions

rji
that are filled by people from rank j, and let a; be the fraction that
are filled by new appointments. Set ry = 0. We require that all posi-
tions are filled. Thus

N

X r,, +a, = 1.
321 ji i

Vacant positions in class i during period t + 1 are created by
departures hi(t+l), addition of new positions yi(t+l), and by flow of
individuals in class i to fill other positions. The total number of

vacancies created is

N
;
(49) h, (t+1) + y, (t+1) + jzl rijzj(t+l).

If all vacancies are filled by time t + 1, then (48) and (49)

must be equal. In matrix notation we have

(50) z(t+l) = h(t+l) + y(t+1) + Rz (t+l).

Equation (50) can be solved for =z in terms of h and vy,
2(t+1) = (IR, Fih(e+1+y(e+1)).

In the steady state we obtain

(51) z = (I—R)—lh, y=0, s =X.
From this we can compute new appointments fOi = z,a., and internal
flows f,, = r,,z,. Specification of s, allows us to compute f,, =
1j 3 1 ii
s, Tz and the average lifetime in class i for an individual is

e itk o etz o S
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S,
L o= -
i z,
i
Problem28: Show that the equilibrium vacancy model is equivalent to an
equilibrium Markov model with
qu = rijvJ/;l for 1i# 3,
= (L -1)/2 =
Qg = 4175, i =vay

ExamplelQ: Consider a six class organization where classes 1, 2, 3 are in
the bottom stratum, classes 4 and 5 are in the middle stratum and class 6

the top stratum. Lel us assume

1 2 34 5 6
1 [ 2 . 15 1 ]
2| .15 .1 .2
R=3] .05 .1 25 .05
4 .5 4
5 A 3
6 | _
a= 8 7 .8 2 15 .3
h = 17 9 13 4 5 1
s = 400 470 375 85 90 10

Notice from R that one can move up in strata but not dowmn.

Of the vacancies created in classc 4, for example, 15% are filled
from class 1, 257 from class 3, 407% from class 5 and 207 by new people.
Nine people leave the system from class 2 each period, 13 from 3, 17 from 1,

etc. The system has 400 people in 1, 470 in 2, 375 in 3, etc.



86

First we calculate (I—R)—l which is

C1.060  .220 .126 .311  .310  .210 |
.160  1.050 .120 .183  .323  .170
680  .166 1.020  .371  .266  .228

1.250  .025  .687
500 1.250  .575
1.000

From equations (47) and (51) we see that the vectors v (steady

stace vacancies) and z (steady state positions filled) are equal and

both are given by the vector

(18.1,15.3,18.1,8.8,8.9,1.0).

The average lifetime of an individual in each class is given by the
vector

(22.1,30.7,20.7,9.6,10.2,10.0) .
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13. More General Fractional Appointment Policies.

In this section we consider the fractional flow model

(52) s(t+l) = (Q+A)s(t).

We assume A = 0, and e(Q+A) = e. In this model the appointment policy
is

(53) f(t+1) = As(t),

which is a linear function of the current stocks of manpower. By assuming

A T s ke N T b g

A =2 0, we have insured that f(t) = 0. Also the systcn will stay of

constant size since b
es(t+l) = e(QHA)s(t) = es(t).

It is apparent that w must equal eA. We can interpret aij/ wj
as the fraction of departures in class j that are replaced by appoint-
ments in class 1i. This type of appointment policy is clearly more
flexible than the policy presented in section 4 where aij = afﬁj for
allt i and j.

The equilibrium version of equation (52) is

(54) s = (HA)s, f As.

The question arises, 1s it possible to obtain equilibrium solutions
of (54) that are not possible when we restrict aij to the form ajvy

. N , ,
with }. 129 = 1?7 The answer is no as we now show.
J:

Let s and f tUe any equilibrium solution nf (54); then let

(55) a = As/us, ]
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eAs/ws = 1

Clearly ea

and

As
Qs + — ws = s,
ws

(QH+a.w)s

However, if we use the fractional appointment policy a s
then the path to equilibrium using this appointment policy will in general
differ from the path taken using aprointment policy A.

Problem 29: Suppose we require (Q+A) 2 0, 2and e(Q+A) = e; but allow
elements of A to be negative. Lxamine and interpret this model.

Example 11: Consider a university faculty consisting of the following 15

classes of manpower.

Class Description
1 Nontenure
2 Tenure - Age 30 to 34
3 Tenure - Age 35 to 39

4 Tenure -~ Age 40 to 44

5 Tenure - Age 45 to 49

6 Tenure - Age 50 to 54

7 Tenure - Age 55 to 58, Low Salary

8 Tenure - Age 59 to 61, Low Salary

9 Tenure - Age 62 to 64, Low Salary

10 Tenure ~ Age 55 to 58, Medium Salary
11 Tenure - Age 59 to 61, Medium Salary
12 Tenure - Age 62 to 64, Medium Salary
13 Tenure - Age 55 to 58, High Salary
14 Tenure - Age 59 to 61, H'gh Salary
15 Tenure - Age 62 to 64, High Salary

The transition matrix is given in Ta»lelf.23and shows the estimated
fractional flows when an early retirement system has been institﬁted.

We have broken tiue departure class (0) into three separate classes,
early retirement (16), normal retirement (17), and others (18).

The departure fraction Q; is the sum of the last three numbers
in column i. Before, the early retirement program was instituted the

fractional appointment vector a was given by

AS  for s(0) # s,

b

S o
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Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a .8 .028 .044 044 03¢ .01 O O O O O O .01 .028 O

Under the early retirement policy, all new appointments that arise
from early retirements will be filled by nontenure appointments.

For each class i let r, = be the fraction that retire early,

96,1

and let W be the fraction that left the system before the early

retirement plan w, In other words we assume that

= + .
i 917,17 Ys,i

Now define b, = {1 w2 1} and the matrix A by

0 otherwise
(56) a,, =b.r, + a.w,

A portion of the appointment matrix is presented below along with the

equilibrium solution of (54) with A = 413 (total faculty in system).

Equilibrium Solution

1 2 3 4 5 6 7 s 9 10 11 12 13 14 15
s 141 23 47 47 50 46 9 3 2 9 5 2 12 9 8

The non zero elements of the first and ninth colimns of A are

ca0wn.
Yows
1 2 3 4 5 6 13 14
0.12 .0042 .0066 .0066 .0054 .0015 .0015 .0042
column
9 .556 .0034 .0053 .0053 .0043 .0012 .0012 .0034

Note that column 9 is not proportional to column 1.
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The equivalent simple appointment policy is given by 2 = As/ws.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a 0.83 .024 .037 .037 .03 .008 0 0 C O O O .008 .024

From an initial value of s(0), given below, we projected s(t)

for five periods using first the appointment policy A (56),then using

~

a above. The values of sl(t) are shown below
Period

0 1 2 3 4 5

Policy A 137 144 140 147 146 145

Policy a 137 143 145 146 145 144

FOSE T s L e £ R g
sl ddihaiialn i
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14*% Evolution of Fixed Size Systems.

This section examines the fractional flow model

(57) s(t) = Q s(t-1) + f(t), f(t) 20 t >1

given s(0) 2 0, s(0)e = .
We make four assumptions about this system:

(1) Q=20
(ii) w=e-eQ20
(iii) (I-Q) has a nonnegative inverse.

(iv) s(t)e = A for all t.

Items (i) and (ii) simply identify a fractional flow model. Assumption (iii)
is equivalent to Qt + 0. Thus the legacy of any initial stock levels s(0)
becomes negligible in the distant future. The final assumption (iv), of
coastant size, places a limitation on the appointment vector f£(t). Summing
the vectors in (57),

es(t) = eQs(t-1) + ef(t)

es(t-1) - ws(t-1) + ef(t).

Thus to preserve constant size

(58) ef (t)

ws(t-1),

Equation (58) simply says the number of new appointments in t must equal

the number of departures in (t-1).

We can normalize the problem by defining

z{(t) = s(t)/X, h(t) = £(t)/xr.
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Then (57) and (58) become

(59) z(t) = Qz(t-1) + h(t),
eh(t) = wz(t-1),
h(t) 2 0, t =1,2,...,
z(0) given, ez(0) =1, z(0) 2 O.

Define
(60) S ={zlez=1, z 2 0}.

S 1is che set of all distributions of manpower in the N classes. The
constraints in (59) require that z(t) € S for all t, using S we can
write (59) in an alternate manner; given any sequence {z(t), h(t)} that

satisfies (59) define a(t) as
;Z(t—l) if WZ(t—l) = 0,

(61) a(t) =
h(t)

m otherwise.

Motice that a(t) S for all t > 1, and that

(62) z(t)

or

1}

Q + a(t) w) z(t-1)

z(t)

Pla(t)] z(t-1) ,

where P[a(t)] 1is the stochastic matrix Q + a(t)+'w with elements
= . €
Pij[a(t)] qij + ai(t)wj Alternately, z(0) € S and a sequence

a(t) ¢ S, t 21, determines a solution z(t) € S of (62); by defining

h(t) = a(t)-wz(t-1), we can then construct a solution of (59).
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Problem 30: Given the system

Ste) = Qs(t-1) + f£(t), f£(t) > 0

Stt)e = 62 t =1,2,...,

and §(0)e - AS(0) > 0. How and under what conditions can we convert this
into the form of (59), and still satisfy requiremeats (i) - (iv)?

Let z be a distribution of manpower at any time. An interesting
set of points to examine, is all points in S that can be reached from =z

in a single time period. We define this set to be
(63) R(z) = {yly 2 Qz, y ¢ S}

R(z) 1is the set of all points that can be reached irom =z in one period.
To determine the set of points that can be reached in two periods, we must
generalize our notion of R. Let A be any nonempty subset of S, and

define
(64) R(A) = {y|y 20z, z ¢ A, y € S} .

R(A) 1is the set of all points that can be reached in one step from some

point in A. It follows that
(65) R(A) = U R(2)
€

Now define

(66) rY(A)

= A
RY(A) = n(a)
Rt(A) = R[R(t“l)(A)], £t > 2.
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It follows that Rt(A) is the set of all points that can be reached in t
periods starting from some 2z € A. When A consists of a single point
z, then we write Rt(z).

The analysis that follows is motivated by the following problem:
given an initial distribution z(0) can we reach a desired distribution vy
in a finite number of steps? Moreover, when we reach y 1is it possible to
remainr at y or return to y? The easy question, can we remain at y, wils
be treated first. We can only give a partial answer to the questions, can we
move from z(0) to y, and can we retirn to y. We give an operational
characterization of the set E of maintainable or equilibrium distributions.
If ye E, then it is possible to remain at vy.

We also describe a set L of limiting distributions. If y 1is in
the interior of L then, for any 2z(0), it is possible to move to y in
a finite number of steps, and it is obviously possible to return to y from
y in a finite number of steps. However, given any y it is difficult to
determine if y ¢ L. Thus, the characterization of L is not as operational
as the characterizations of the set E.

Example 11: Given Q, z(0), y below

.8 33 1
Q= 1.1 .95 z(0) = |34} y=|0}
.02 .9 33 0

it is not possible to reach y from z(0), since 23(t) >0 for all t.

0
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Clearly, it is possible to remain at y if and only if y ¢ R(y), or

y € {z|z 2 Qy, z € S).

This will be true if and only if y 2 Qy. Let us define the equilibrium

set E as the set of distributions that can be repeated
(67) E={yly e R(y), y €8} = {yly 2 Qy, y ¢ S}.

It follows that vy ¢ RL(y) for all t, thus it is possible to remain at vy
indefinitely. There is another way to describe the set E. Recall that

D = (I—Q)_l. Then
(68) E={yly=Dh, yeS, h>0}.

To see this, note that if y =Dh and h 2 0, then (I-Q)y =h 2 0 and
y € E. Also, if y € E, then define h = (I-Q)y 2 0, and note that y = Dh.
For y ¢ E, define h(y) = (I-Q)y, a(y) = (I-Q)y/wy, and Pla(y)] =

Q + a(y)-w. Then we obtain
(69) Pla(yly = y.
If h(y) > 0, then for any initial distribution 2(0) we obtain

(70) P la(y)] z(0) » 5 .

Problem 31: Prove

(i) If y € E, then wy >0

(ii) There is a y € E, such that y > Qy.

(iii) If y » Qy, then Pla(y)] is a regular Markov matrix.
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Problem 32: Construct an example where y € E, but y > Qy is not
true, and Pt[a(y)] z(0) does not converge (or come close to y). 0

We now turn to the long range behavior of the system (59). Let
A and B be subsets of S. If A » B, then R(A) > R(B). This is
reasonable, since it tells us that if you can go to y from z ¢ B, then
you can certainly reach y from 2 e¢ B < A. Notice that R(E) > E. This

is true because y ¢ E implies y ¢ R(y). Now consider the inclusions

(1) R(E) » E
(ii) S > E

(iii) S = R(S)
and repeatedly apply R. We obtain
(71) s 5> R5(s) > R¥(s) 5 R™MNE) o RY(E) S E for all t 2 0.
Since Rt(S) is a contracting sequence of sets we can define

RE(5)

0

(72)

o
Il
h > 8

It is evident that L 1is nonempty since L > E, and it is not tco difficult
to show that R(L) = L.

Problem 33: Prove R(L) = L.

iy
Lx

This result can be carried one step further when we make the

5

additional assumption that w > 0.

T

Theorem: If w > 0, then L is the unique closed set that satisfies

SR

2%

R(B) = B. Moreover, if A 1is any closed subset of S, then Rt(A) -+ L

geometrically.
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The theorem is proved in Grinold and Stanford[1973]. Notice that the
set L has several remarkable properties. First, if z(0) ¢ L, then
z(t) e L for all t. Once the system enters L it cannot leave.

Consider the problem of moving from 2z(0) ¢ S to y. If y 1is in
the jnterior of L, ther there is a t* such that for t = t*,y € Rt(z(O)).
In particular if we take z(J) =y, then one can return in a finite number
of steps to any y in the interior of L. Thus any z(0) € S can reach vy
in a finite number of steps. In contrast, suppose y ¢ L. Take z(0) ¢ E,

then for each t
t t
y ¢ L 2 R (E) > R (2(0)).

It is not possible to reach y from z(0). Moreover, if y ¢ L, then
the system cannot return to y. A return would imply vy ¢ Rt'n(y) for
n=1,2,... . However, Rt'n(y) + L, and y ¢ L. This contradiction shows
we cannot return to any vy ¢ L.

In general it is not possible to obtain a characteivization of L.
The question, "is y din L" cannot be precisely answered. However,
E ¢ L 1is explicitly known. If a z el 1is found such that vy ¢ Rt(z)
for some t, then y ¢ L.

Example 12: When n = 3, it is possible to depict the set E.

Suppose

932 943
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and w > 0. For Q in this form it is straightforward to show that

1
(q21+w1)
991 1
D =
(q21+w1) (q32+w2) (q32+w2)
921 %32 93 1
(qpptvp) (agptwdwy  (qgptwydwy wy

Now let y(k) be the point in E which corresponds to the stationary policy
of making all appointments into class k, k = 1,2,3,. The three points
y(1), y(2), and y(3) form the extreme points of the set E and are given

by (using (68))

A3ty )wg /Ky ¢ e
y(L) = | dyywa/Ky yp = | walKy vy =10,
q)1995/Ky d3,/K, 1

where K1 = (q32+w2)w3 + (q32+w3)q21, and K + w

2 T 93 T ¥y

Using the values of Q inexample 11, Kl = 0.017, K, = 0.12 and the

2

extreme points of E are

B n T ~ T
0.294 0 0
y(1) =[0.588 v(2) =| 0.833 y(3) =| 0
1.0

L9.118— 5.0.167_ J

The sets S, E, R(z) and Rz(z) for z = [+8,-1,°1] are illustrated in Figure

IT.13.
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S
z = {-3,-1,'1;:1\

Figure I1I.13: Illustration of Sets S, E, R(z) and Rz(z) for the 3-class
System in Example 11.
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15. Notes and Comments.

T R 12

The fractional flow model has been discussed in numerous papers

SRt

in the literature,; but almost all discussions have been in the context of

a Markc chain. An extensive bibliography can be found in Bartholomew [1973],

R R e

pages 381-402,

The hindsight and foresight models discussed in sections 3 and 4

i

A

correspond to ''closed" systems as defined in Bartholomew [1973] with
(N+1) and N states respectively. The matrix theory referred to in

section 6 can be found in numerous places including Debreu and Herstein

[1953]. Section 8 is essentially taken from Branchflower [1970]. The reader

interested in pursuing the probabilistic interpretation should consult

Bartholomew [1973] and Kemeny and Snell [1960].

The data and some of the ideas in section 10 are taken from
Hopkins [1974]. The early retirement scheme suggested in this section has
been used on a trial basis at Stanford University. Section 11 is based
on a report by Marshall, Oliver and Suslow [1970], and in some sense shows
the limitations of the cross-sectional model. A close look at the data
in this section is the motivation for the longitudinal models discussed
in the next report. The vacancy model in section 12 was formulated by
White [1970]. These models have been used to forecast flow in several
strict hierarchies. .

Sections 13 and 14 are more advanced and are intended for those
readers more familiar with matrix theory and Markov chain theory. Section
13 owes a great deal to privateconversations with Robert Stanford. Section
14 considers the questionof long-run evolution, which has been investigated

by Bartholomew [1969]. Armacost [1970], Toole [1971], Davies [1973] and

Grinold and Stanford [1973].
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Included in the bibliography are examples which demonstrate the
many applications of cross-sect:ional wodels in manpower. Young and Almond
Rowland and Sovereign, and Vroom and MacCrimmon have applied the model to
the distribution of staff and management in an organization. Blumen
Kogan and McCarthy have applied it to Labor Mobility. Thonstad has used
it as the basis of models for national education and manpower planning as
did Armitage, Smith and Alper. Clough and McReynolds, and Marshall, Oliver
and Suslow have applied it to student enrollment forecasting in higher
education. Charnes, Copper and Niehaus use it as a basis of their models
for planning the civilian manpower in the U.S. Department of the Navy.

The report by the Naval Personnel Research Lab [1973] gives a summary
ol numerous manpower planning models used in the U.S. Armed Forces (with
emphasis on the Navy). The basis of many of these models, though often
not explicitly stated, is the cross-sectional model with its fractional
flow assumptions. Finally, the proceedings of two NATO conferences on

Manpower Planning are available in Smith [1971] and Wilson [1969].
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